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Irregular scattering functions 

Marius Kolsrud 
Institute of Physics, University of Oslo, Oslo 3, Norway 

Received 11 July 1979, in final form 15 April 1980 

Abstract. By scattering in a central potential V ( r )  the state function is split into irregular 
parts, T= @ + X ,  where @ satisfies the Schrodinger equation with a modified potential 
V +  W. The non-Hermitian term W vanishes in r space except on the incident (I) axis, 
where it is singular and non-local. O n  the energy shell in p space W compensates the 
potential V. In r space @ and X become logarithmically singular on the z axis, and the 
asymptotic difference between @and a plane wave is assumed to be of O( V). The scattering 
amplitude can be expressed by an integral containing T, @ and W. Half-shell F matrices are 
defined, which are closely related to the T matrix. The formalism is valid also for Coulomb 
scattering, where @ and X become equal to the usual irregular solutions. The Coulomb F 
matrix is found explicitly, and gives the scattering amplitude on the energy shell, without any 
‘anomalies’. The classical limits of the phases of Coulomb’s @ and X are found, and they 
coincide with the incoming and scattering part of the action function respectively. This 
property of the irregular functions is believed to be of general validity. The theory is also 
applied to the Yukawa case, where T and 0 are given to all orders. General orthonormality 
relations for @ are established by means of reciprocal functions. 

1. Introduction 

In the standard theory for scattering in short-range potentials V the wavefunction is 
split into two parts 

Y(r)  = Wo(r)+W’(r) = exp(ik. r )  + Y ’ ( r )  - exp(ik. r )  + f ( i ) [ e x p ( i k v ) / r ] + O ( l / r * ) .  
r-oo 

The scattering amplitude f can be expressed by an integral containing the total W and 
the free WO (and V). f is also proportional to the on-shell value of the transition matrix 
T, etc. 

If this formalism is applied to the Coulomb case, well-known on-shell ‘anomalies’ 
appear: infinite phases, and incorrect absolute values. The last anomaly can be avoided, 
however, by using a screening (of the potential), which is removed only after having 
passed on to the energy shells (Kolsrud 1978). But the infinite phases-i.e. infrared 
divergencies-still remain. 

A new approach was initiated by Dollard (1964, 1966, 1968), who added some 
time- 2nd momentum-dependent terms to the Hamiltonian, which in a sense compen- 
sated the awkward long-range effects of the Coulomb potential. 

An equivalent way of avoiding the Coulomb anomalies was given by van Haeringen 
(1976a, b). He replaced the free states by the so-called ‘asymptotic states’ of Nutt 
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822 A4 Kolsrud 

(1968), which are expressed by means of generalised distributions in momentum space. 
However, these states are difficult to formulate explicitly in coordinate space. 

Recently Hamza (1979) showed how one could avoid explicit calculations of the 
asymptotic states by employing certain modified 'long-range' Green functions (Kolsrud 
1977). 

The present paper was initiated by the observation that the Coulomb scattering 
amplitude could be expressed by an integral which contained a quantity closely 
connected with the irregular Coulomb functions @" and X', say, where \Ir' = CD' + X". By 
means of these functions certain (half-shell) F' matrices can be defined, which have the 
correct on-shell value, i.e. they become proportional to the Coulomb scattering 
amplitude f" without any anomalies. 

The functions @' and X' satisfy the Schrodinger equation in all space except on the 
positive part of the incident (z)axis, where they are logarithmically singular. At large 
distances @' behaves like a modified plane wave, while X" behaves like a modified 
scattered wave. 

In the present paper we shall give a general treatment of such irregular scattering 
functions for arbitrary central potentials V(r). By means of a non-Hermitian potential- 
like quantity W, we define a splitting of the scattering wavefunction 

T ( r )  = @ ( r )  + X ( r ) .  (1.3) 

Here @ and X satisfy the Schrodinger equation in all space except on the t axis, where 
they are logarithmically singular. With short-range V(r) their asymptotic forms 
become 

@ ( r )  - exp(ik . r )  + O[ V(r)], (1.4) 

X ( r )  - f(f)[exp(ikr)/r]+ O( l / rz ) .  (1.5) 

1 - 5  

r + c c  

The term O ( V )  in (1,4), rather than O(Y2), is a conjecture in the present paper. 
Note the difference between ( l . l ) ,  (1.2) and (1.3), (1.4), where \Ira satisfies the free 

and @ the total equation. In spite of their irregular character it seems natural to call 0 
and X the incident and scattered wave respectively. The radial functions of @ and X 
satisfy modified Schrodinger equations. In the Coulomb case these partial waves and 
their equations have been given by van Haeringen (1976b). But hc assumes that his 
results cannot be generalised to other potential cases. 

A special reason for characterising 0 and X as the incident and scattered wave is the 
fact that the classical limits of the phases (times ti) of @' and X' are equal to the Coulomb 
action functions for the incident and scattered particle orbits, respectively. We assume 
that this property is valid for any central-potential scattering. 

2. Irregular scattering states 

In order to define the 'irregular splitting' of the scattering state 

for central potentials V(r), we introduce a potential-like quantity Wk with the following 
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properties ( t i  = 1): 

where 

Our solution is 

wk = - QkJk v, 
where 

Qk = Ir: = O)(p :  = 01, 
2 1/2  

Jk = Jo[r,(k: - p z )  1. 
Here k ,  = k + i ~ ,  and Jo is the Bessel function 

(2.4) 

(2.5) 

Our normalisation is shown by 

(P:lP;) = S ( P :  -p9, (x’ix”) = ~TS(X‘ -X”) .  (2.10) 

Note that 
dx’ 
2T jx’= 0) = J dpilp:), 

(p:lx’) = exp(-ip:x’). 

( p i  = 01 = J---(~‘I, 

because 

Condition ( a )  in (2.2) is satisfied by (2.5), (2.6) because 

(r’lQk = (2?7)28(r : ) (Z’ / (p:  = 01. 

By means of (2.9) we write (2.4) as 

(2.1 1) 

(2.12) 

(2.13) 

1 1 
d3r’(Tlr’)(r’l = 7 1 d3r’ exp(-ip:z‘)Jo(p;r:)(r’l. (2.14) 

(2T) (TI =(27T) 

According to (2.3) and (2.5) this should be compared with 
I 2  1/2  

( P ’ I Q k J k  = ( P % P ;  = OIJo[rl(k: - p z  1 

(2.15) 1 I2 1/2  - - 7 d3r’(p:lz‘)(r’lJo[rl(k2+ - p z  1 I. 
(2n)  

I2 A s p ?  = p I 2 -  p z  we see that the second condition (2.3) is fulfilled. Note that 

(p’ l  wk + (71 v = O(k2 - p ” ) .  (2.16) 
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With short-range potentials V ( r )  the ‘irregular’ vectors I @ k )  and I & )  are defined by 
the equations 

Hence I q k )  in (2.1) satisfies the usual 

With H = Ho + V we may also write 

where 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

These equations correspond to the modified Schrodinger equation 

(Ek - H k ) l @ k ) =  0, (2.22) 

or 

(2.23) 

(2.24) 

As shown in appendix 3 the orthonormalisation of 10) can be expressed by means of 
reciprocal vector sets. 

3. Momentum and coordinate representations 

As [L,, V ]  = 0 and [L,, w k ]  = 0, the solutions of (2.17)-(2.21) are symmetric about the 
k axis. Hence V ( p ’ ,  p ” )  = (p’ l  VIP”) may be replaced by 

i r  (21 Vlp”) = J d3r’ exp(-ip:z‘)Jo(p:r:) exp(ip” . r’) V(r’) 

= R p ? ,  p : ;  P ” ) ,  (3 .1)  

(3.2) 

according to (2.14). Equations (2.5) and (2.15) then show that 

( p’l w k  1 p ” )  = - v( k: - p k2> p ; p ” )  w k  ( p i j  p ” ) .  
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We recall that q k ( p )  is singular on the energy shell, where it gives the scattering 
amplitude: 

1 
lim ( k 2 - p 2 ) q k ( p ) = 2 m  5 d3p’ V ( p , p ’ ) p = k q k ( P ’ ) = - T  f k ( 8 ) .  
p - . k  277 

Hence @ k ( p )  has no scattering part. 

(3.8) 

In coordinate space (2.5) and (2.13) lead to 

= - s ( x ’ ” ( y ’ ) D k ( Z ’ - z ’ ’ ,  r l ; )  V ( r ” ) ,  

where 

(3.9) 

12 1/2  D k ( Z ’ - Z ‘ ’ ,  r ; ) = -  dp: exp[i(z’-z”)p:]Jo[r‘;(k: - p z  ) 1. (3.10) 
277 ‘ J  

Dk is a (divergent) generalised function, which is always multiplied by the ‘test function’ 
Vd in an integral. The potential-like quantity wk thus vanishes in r space except on the 
z axis, where it is singular and non-local. (Note: W k ( r ’ ,  r”)  = - V ( r ’ ,  r”) for rl; = 0.) 

The modified Schrodinger equations (2.22), (2.23) become 

(3.11) J ( G ( k 2 + V 2 ) -  1 v ( r ) ) @ k ( r ) -  d3rr w k ( r ,  r r ) @ k ( r ‘ ) = o ,  

(3.12) 
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where (3.6) and (3.9) yield 

(3.14) 

Equations (2.17), or rather (3.4), (3 .9 ,  correspond to 

They are equivalent to the representation of (2.19) 

(3.16) 

From (3.15) we get the asymptotic forms 

exp(ik. r )  exp(ikr) m @k ( r ’ )  
{ Xk (r’)  

-___ --(I d3r‘exp(-iki. r’)V(r‘) 
r 27r 

f dz‘ exp(-ik. iz‘)wk(z’) . (3.17) J ) 
Alternatively, the asymptotic value of Gk in (3.1 6) (cf Rodberg and Thaler 1967) and of 
q k  yields 

(3.18) 

(3.19) 

We will show that the term in the large parentheses in (3.17) for @k vanishes. With 
p =- k i  it can be written 

(. . .) = d3r’ exp(-ip. r’)  V(r’)@k(r’) + dz’ exp(-ip,z’)wk(z’) 5 

according to (3.2) (and V-, v). Hence @k(r) contains no scattering part, as noted 
earlier for @k(p). (The currents associated with Qk(r)  and Xk(r) have a sink and a 
source, respectively, on the z axis.) 

Using (3.20) in (3.18), we get the following new formula for the scattering ampli- 
tude: 
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By means of (3.9) and (3.13) this can also be written 

f k ( @ )  l j  d3r d3r ’KP(r )Wk(r ,  r‘)@k(r’) (3.22) 

= 4T2m(q;-’I wk1@r)) (3.23‘) 

= 47T2m(q;-)1wP’), (3.23”) 

27T 

(recall (2.24)), because 

ok(r) @r) ( r ) ,  q-p(r)  = ~ ! y ( r )  = Vb-’(r)*. (3.24) 

Note that the (general) micro-reversibility property 

fk (@) =f-p(-L) ,  p = k ,  (3.25) 

yields variants of these formulae. 
Concerning the behaviour of @ k ( r )  near the z axis, we see that the last term in (3.15) 

(and (3.16)) is singular for r = z t .  (G behaves like jr -r’l-’ when r = r’, like GO.) We 
therefore consider the corresponding term in (3.4) 

(3.26) 

The Fourier transform can be written 

where (2.9) gives 

(3.28) 

By partial integration we see that 

(3.29) 

and (3.27) with (3.14) yields 

m 
@ k ( r ) ]  - * - w k ( z )  ln(krJ. 
Xk(r )  7~ 

We note that Jud3ri@k(r)/2 exists for finite volumes U. 

4. Radial functions 

We expand in partial waves 

(3.31) 
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i.e. 

9dr, k )  = h ( r ,  k )  +xdr ,  k ) .  

With [=cos 8 equation (3.12) is written 

(4.2) 

which leads to the radial equations 

Equations (1.4), (1.5) indicate that 

where 

f i ( k )  = (1/2ik)[exp(2i&) - 13. 

(4.5) 

(4.6) 

(4.7) 

However, q5i(r, k )  may contain terms which asymptotically are of lower order than V(r), 
but which do not contribute to (1.4). If, for example, i’q51 is independent of 1 when 
r + CO, the sum (4.1) will asymptotically be proportional to 

P[([)(21+ 1) = 2S([- 1) = 0 for 8>0.  
r 

5. F matrices 

We get off -shell extensions of (3.21)-(3.23) by introducing two ‘half-shell’ matrices for 
arbitrary p : 



Irregular scattering functions 829 

As the differences in the last parentheses in ( 5 . 5 ) ,  (5.6) are finite for p = k (recall (1.4)), 
we get on the energy shell 

(5.7) 
p - t k  

(5.8) 

Fk(k(p, k )  - (qb-’l Vlk)=-fk(p^)/4r2m, 

F,(P, k )  - ( P I  vIW’> = -8k(b)/4T m. 
2 

p + k  

Equations ( 5 3 ,  (5.6) show the connection between the F matrices and the 
half-shell T matrices, where 

T p ( P ,  k) =(plTplk)= (~b- ) lv lk ) ,  (5.9) 

T k ( p ,  k )  = (PlTklk) = vlwj;“), (5.10) 

with 

1 
Tk=v+v V, etc. (5.11) 

The first-order forms of (5.1), (5.2) are easily obtained. Recalling (3.2) and writing 

E k  +ic - H  

~ ( p ’ ,  p ” )  = v(lp’-p”12), we get 

F:’) ( p ,  k )  = V(2 k2 - 2 kp,), 

TY’(p’,p”)= T y ’ ( p ’ , p ” ) =  V(p’ ,p”)=  V(p’2+p”2-2p’ . p ” ) .  
F r ’ ( p ,  k ) =  V(2p2-2kp,), (5.12) 

(5.13) 

They have the common on-shell limit 

- f r ’ ( 8 ) / 4 ~ ~ m  = V(lp-k12),=k = V(2k2-2k2c0s e) .  (5.14) 

6. Coulomb functions 

The Coulomb potential is written (with h = 1) 

The scattering wave function is split like (1.3) with the following modified version of 
(1.4), (1.5) when k r - k . r + c o :  

@ k ( r )  + exp(ik . r )  exp[-iv ln(kr - k . r ) ]  (6.2) 

exp[iv ln(2kr)]+ 0 
exp(ikr) 

Xk(r) fk ( f )  7 
where 

p = k. 
r(l-iv) 2ku 

f k ( B )  = r(l + iv) 

(6.3) 

The singularities appear on the positive part of the z axis, and have the form (3.31) 

(6.5) 
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where 

m exp(-vrr/2) 
-wk(z) = - O ( z )  exp(ikz), 
2rr T(iV) 

with S(z >0) = 1, e ( z  <0) = 0. (With r: = r2--z2 we see that the term ln[k(r + z ) ]  is 
eliminated by e.) 

van Haeringen (1979) has shown that the irregular Coulomb functions satisfy 
equations like (3.12), with W k ( t )  given by (6.6). An alternative proof is given in 
appendix 1. 

We now wish to show that (6.6) satisfies the relation (3.13), and consequently that 
(3.11) is valid for the Coulomb function @k(r). With equation (3.10) and with @ k ( r )  

from appendix 1 we evaluate the quantity 

“I m 
2rr 2rr 
-u ( z )=- -  d r ’Dk(z -z ’ , ry )  (6.7‘) 

1 r(l -iv)--- dtt-’+’”(t - l)-i”I(z, t ) ,  (6.7”) 
2rri I,, 

where 
m 

1 ( z ,  t) =* 1 dp, d3r’ exp(-ip,z’)Jo[r;(k: - p : ) ” 2 ]  2rr -m 

1 
r 

x 7  exp{ik[tr’+ (1 - t)z’]) 

1 
= ive(z) exp(ikz)- 

t -  1 

Here we have used formulae from Magnus et a1 (1966). Inserting (6.8) in (6.7”) we get 

1 d iu 

2rri dt  
m 

2rr - u ( z )  = -O(z) exp(ikz) exp r(l -iv)- dt-[t (t  - 1)-’”], (6.9) 

which with well-known formulae becomes equal to (6.6). Hence w i n  (6.7’) equals w k  in 
(6.6). 

In spite of the fact that the Coulomb q k ( r )  does not satisfy the usual integral 
equation (obtained from (3.15)), the irregular part X,(r) does satisfy (3.15). van 
Haeringen (1979) has shown this for the equivalent (lower) equation (3.16). With 
(3.19) modified to the Coulomb case we therefore expect that the formulae (3.21)- 
(3.23) are valid also for the Coulomb amplitude (6.4). The simplest method for testing 
this is to consider the following relation, obtained from the Schrodinger equations: 

( jmm- dff * x k q q - p  = 0, r # z ,  p = k ,  (6.10) 

where A v B  = AVB - BVA. Here is the limit of the paraboloid of rotation r - z = 
constant -9 0 about the singular positive z axis, with duo oriented outwards. By means 
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of (6.2), (6.3) we evaluate the first integral: 

(6.11) 

= lim (-ir)2“exp(ikr) 
r+w I r 

= 4l7fk(p*), 

where we have used 

(6.12) 

exp(iq. r )  - (2rr/i4r)[exp(i4r)s(n, -0,) -exp(-iqr)s(a, + &)I, 
Note that the asymptotic logarithmic phases in the second integral (6.1 1) cancel. 

(6.13) 
r+w 

Equations (6.10) and (6.12) show that 

(6.14) 

The integration over go can be performed with parabolic coordinates 6 , ~  = r T z and 4. 
With (6.5) we get 

(6.15) 

i.e. equation (3.21). Starting with q k  and a-, we get alternatively (cf (3.25)) 
W 

fk(p*)=-21[ dr qk(-rp*)w-p(r). (6.16) 
2l7 0 

For later comparison we give the first-order Coulomb functions 

(6.17) 

(6.18) 

@U) 

XU) k ( r )  = i v  exp(ik. r )  Ei(ikr - ik .  r ) ,  
k ( r )  = -iv exp(ik. r )  ln(kr - k. r ) ,  

where 
exp(zt) - 1 1 

Ei (z )=  lo dt  +In(-z) + y t 

exp z -- ( y  = Euler’s constant). 
z+w z 

(6.19‘) 

(6.19”) 

The off-shell extension of (6.15) (i.e. p # k )  is evaluated with P f rom appendix 1 and 
w from (6.6). Referring to (5.1) we get 

(6.20) 
where 

r o o  I (6.21) I ( t ) = J  dz e x p { i [ k - p , + t ( p + p , ) + i ~ l z } =  
0 ( p  + p Z ) t  + k - pz + ic ‘ 
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The condition for (6.21) is that Im t > - E / ( p  + p z ) .  The path col of integration may 
then be deformed to an anticlockwise path around the pole to = ( p z  - k - iE)/(p + p z ) ,  an 
infinite circle, and two lines from to to CO. The only contribution comes from the pole to, 
which gives 

(6.22) 

Referring to ( 5 . 5 ) ,  we compare (6.22) with the following Coulomb result (Guth and 
When p = k, we get (6.4), as already shown in (6.15). 

Mullin 1951): 

(6.23) 

Ze 
r -4.n2m(9~-’I---exp(-~r)lk)=exp 

Note the on-shell anomalies of (6.23) when E + 0. 

technique similar to that for F k ( p ,  k).  We give only the result: 
With a partial-wave expansion like (4.1) the Coulomb Fi(p, k)  is found by a 

U3 

-4r2mF‘(p,  k ) =  (-i) dr+!q(r,p)wk(r) exp(-Er) 

(6.24) 

(6.25) 

The phase of C, goes to infinity when E vanishes. Rut as lim C, is independent of I ,  it 
does not contribute in the partial-wave sum (giving -6(cos 6 - 1)). Hence (6.25) is 
equivalent to the usual Coulomb expression 

f i (k)  = (1/2ik) exp(2iai) or (1/2ik)[exp(2iai) - 11. (6.26) 

7. Classical Coulomb limit 

To find the asymptotic forms of the irregular Coulomb functions @k(r) and X,(r) when 
ti + 0, i.e. when 

(7.1) 2 v = m e  / t i p , + c o ,  p m  = hk, 

we shall use the method of steepest descent (Tollefsen 1975, Kolsrud 1975, unpub- 
lished). With 

,+ 

(7.2) 2 2  5 = r - r .  k, a = me / p m ,  
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the integrals in equation (A1.2) are written 

1 
- ' dt-exp[ivc$(t)], i = O ,  1, 
2 r i  .lcz t 

where 

c$(t)=([/u)t+ln t-ln(t-1).  

The saddle points, where d ' ( t )  = 0, are 

f o ) = t o , l = t i ( i + a / ~ )  1/2 , 
tl 

which gives 

Writing ( A l . l )  as 

equation (7.6) shows-according to the method-that the classical limits of So and S1 
are 

S& = lim so,, 
it-0 

(7.8) 

(The constant C, is divergent like In v.) 

action function S"'(5, T ) ,  separated in 5, 77 = r F z : 
The functions (7.8) are solutions of the classical Hamilton-Jacobi equation for the 

2 mE -me - - - - (5+~)=0 .  
2 

The constant of separation a,,, given by 

mE 

(7.9) 

(7.10) 

(which is zero for (7.8)), can be shown to have the physical meaning 

(7.11) 1 2  a,, = z m ( e  -Az) .  

Here A is the Runge-Lenz vector 

(7.12) 
1 r 

A = - p x ( r x p ) - e 2 - ,  
Vi r 

which is constant for Coulomb motion: 

A = 2Ec, A ,  = 2Ea = e 2 .  (7.13) 
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a in (7.2) is the semi-major axis, and the impact parameter b is the semi-minor axis of 
one hyperbolic orbit. Then c is the vector from the origin to the crossing point of the 
hyperbola’s asymptotes. The ensemble of orbits given by S&, with all values of b, are 
thus characterised by the three constants of motion E, A ,  and L, (= 0). 

The role of A,  as the third quantised operator by Coulomb scattering is perhaps not 
so well known. Applying the symmetrised A,  to q k  in (Al . l ) ,  we get the eigenvalue 
e 2  + ik2k/m. The reason why it is complex is that q k  does not belong to a Hilbert space 
(simple example: put e = 0). 

The fields of classical momenta obtained from (7.8) are 

(7.14) 

(Note: pi,1/2m - e2/ r  = pL/2m.) The transition from the incidentpa to the scatteredp, 
occurs on the z axis. 

The introduction of a ‘classical wavefunction’, or ‘strahlen-optische Wellenfunktion ’, 
given by 

= pAl2 exp[( i / t i )~$]+p:’~ exp[(i/~t)~EI], (7.15) 

where po,l(r) is the particle density, was made by Gordon (1928) in his treatment of 
Rutherford scattering. Later Birkhoff (1933), Keller (1958) and others assumed that a 
form like (7.15) was in general the classical limit of W. (The calculations above for 
Coulomb scattering do not seem to have been published before.) 

8. Yukawa functions 

With an exponentially screened Coulomb potential ( F t  = 1) 

we get (cf 0 3) 

1 - v k / m  
d3rexp[i(p‘-p) . r ] V ( r ) = y  23 (8.2) 27r ( p - p ’ ) 2 + K  

__ 1 - vk/  nz 
2 12 1 / 2 ,  v(p’ ”) = 9 [ ( p 2  

- 2p,p: + K ~ ) ~  - 4plpl ] 
(8.3) 

(8.4) 
With expansions in powers of v, the equations for q k  and ( P k  (cf (3.3)) are satisfied if 

qf+l) ( P I  = T-T d3p’ V(P, p ’ W F ) ( p ’ ) ,  (8.5’) 

@‘k“”’(p) =n 5 d3p‘[V(p, P‘)+ w k ( p z ,  P ‘ ) l @ f ’ ( P ’ ) .  

2m 
k +  - p  

2m 
(8.5”) 

Gorshkov (1961) has given solutions of (8.5’) in aform which it is possible to modify and 

k +  - p  



Irregular scattering functions 835 

use for the solution of (8.5"). With upper limits of integration equal to 1 for q and equal 
to CO for Q, we will show that the solutions are 

where 
Q', = ( p  - k + s,k)'- k2S2,  

m = O  

so = 0,  so = 0. (8.9) 

The integration with respect to s,, in (8.6) can be carried out. We introduce 

(8.10) 

(8.11) 

Q f l = ( p - k + s f l k ) 2 - ( k S n + i ~ )  2 , 
2 2  P =  k +  - p  , 

which, from (8.7), (8.8), satisfy 

This leads to the alternative forms 

(8.12) 

(8.13) 

where 

(8.14) 1 -1 
F,-1 =-, 

PQn -1 

(8.15) 

From (8.6) and (8.13)-(8.15), with n + n + 1, it follows that ( 8 . 5 ' ) ,  (8.5") are satisfied 
if 

(8.16) 1 -iv 
2m d3p' V ( p , p ' ) - = -  (an) S n Q n '  

(8.17) 

Equation (8.16) is established from the obvious relation 

i.e., with Im K > 0, 

(8.19) 1 1 1 
d3p'(p - P ' ) ~ +  K' ( p '  -(1)2-K2 = ( p  - 4 ) 2 -  (K  + i K ) * '  
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As q is proportional to k in (8.7) and (8.10), V may be averaged in (8.16): 

Using (3.2) we obtain (8.17), because (8.10), (8.11) show that 

Q n ( p ?  = k t - p l ) = Q n + P .  

The nth-order term of (3.6), namely 

w(kn ' (pz)  =4Tz  1 d3p' w k ( p z ,  p')@'k"-''(p'), 

can, according to (8.13), (8.15), (8.17), be written 

The first-order expressions are 

(1) vk 1 vk 1 1 
2 ,  \Irk ( p )  = -- -= -- ___ 

IT PQo IT' k:-p2 (p-k)'+K 

@(U vk 1 vk 1 1 - k ( P I = - - ?  
7~ (P+Qo)Qo 7 ~ ' 2 k : - 2 k . p + ~ ~  ( p - k ) ' + ~ ~ '  

(8.20) 

(8.21) 

(8.22) 

(8.23) 

(8.24) 

(8.25) 

(8.27) 

The coordinate space functions are obtained by Fourier-transforming (8.6). The 
paths of si integrations can be chosen such that Im S,  > 0, and we get 

exp[i(Snkr - snk . r ) ] .  

In (8.23) we write 

Qn-l + P = -2 k (1 - sn-l)( p z  - k+ + kUn-l), 

where (8.8)-(8.11) show that 

Equation (3.14) then gives 

. . .  277 1 
m 

w(kn)(z) = --O(z) exp(ikz)(iv)" 

(8.28) 

(8.29) 

(8.30) 

(8.31) 
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An alternative expression for @ p ) ( r )  is obtained by inserting (8.29) in (8.13), (8.15) 
before the Fourier transformation, which leads to 

where 

(8.33) xexpUik{S,-l[rl +(t - 2  I 2 1 1 / 2 -  sn-l(z - z l ) - g n - l z l } j .  

This form indicates the asymptotic behaviour 

Ok(r)  - exp(ikz) + O[exp(-~r)/r] ,  (8.34) 
r - rm 

which is an example of our general conjecture in (1.4). 
The Fourier transforms of (8.27) and (8.25) are 

w j f ' ( z )  = -(2rriv/m)o(z) exp[i(l+ K 2 / 2 k 2 ) k Z ] ,  (8.35) 

@!$)(r 

From 

(8.36) 

3.15) and (8.35) we get 

(8.37) 

Our Yukawa results can be used for describing scattering in potentials which can be 

(8.38) 

where L, represents a linear operation upon the parameter K in the Yukawa potential 
(8.1). We define 

written 

V(r) = L VK (r), 

(8.39) I ~ k ) K 1 , K 2 . . . K n ~  (n) GovK,GovK2 . . GoVKn/k) 

and correspondingly for l @ k ) E ! , .  with potential V,  + Wk,,. This gives 

I q k ) ' " )  (Go V)" I k) = lim L,, . . . L,,, I q k ) ~ ! . , , , , ,  (8.40) 

i.e. also for I X k ) ' " )  and 1 wk)("). Examples of L, are 

K ,  =... = K ,  

and similarly for 

Vom a 
V(r) = Vo exp(-Kr) =- - VK(r), vk a K  

(a )  (8.41) 

(8.42) 
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Concerning the problems (anomalies) in connection with the transition from 
screened to unscreened Coulomb scattering quantities, we refer to other papers by the 
author (Kolsrud 1978, 1977). There we also present a modified integral equation, 
which is valid also for qcoul(r). 

Appendix 1 

The Coulomb functions are defined by 

( A l . l )  r(l - i v )  exp(ik . r )  x 

where 

FJiv,  I ,  i(kr - I C .  r ) ]  = - J dt t-’+’”(t - I)-’’ exp[it(kr - k . r ) ] .  (A1.2) 
1 

2 m  ci  

Here col is a contour around the branch points t = 0 and t = 1, while co(c1) is a path from 
Im t = M, anticlockwise around t = 0 ( t  = l), and back to Im t = W. Hence Fol = Fo +Fl 
and 9 = @ + X .  We get in fact (with k . r = kz) 

x Jc, d t ~ { t ’ ” ( t  - l)l-iv exp[ik(r - z ) t ] }  = Di. (A1.3) 

The contour col makes Dol = 0 for all 2, while co and c1 make DO = D1= 0 when z < r 
and Do = D1 = M when z = r. We show that Do and D1 can be written 

Di = f 2 mS (X ) S  ( y ) 8 ( 2 )  w k  ( Z  ), i = 0, 1, 

i.e. 

(Al .4)  

We get indeed from (Al . lHA1.3 )  

which equals zero when z < 0, like 8 ( z ) ,  and which for z > 0 yields the finite term 

exp(- ~ ~ 1 2 )  
exp(i kz ) . 2 

1 T(iv) 
i v )  exp(ikz),[exp(-2~v)- 11 = 4~ 

(A1.7) 
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Appendix 2 

The behaviour near 6 = r - z = 0 of Coulomb's @ k ( r )  and X k ( r )  is perhaps most easily 
shown in the following way. From (A1.2) we get by partial integration 

- exp(-rv) 

With (Al .1)  and (A1.7) we thus get 

- r(l -iv)T(iv)' 

Appendix 3 

Write H = Ho + V and Hk = H + w k .  We define the following set of vectors: 

(Hence I@k) = l @ k , k ) . )  The reciprocal set is defined by 

1 
E, + ie - H :  I@:) = (1 + ( V  + w: )) 14). 

The two sets obviously satisfy 

(E, - Hk ) 1 @ k,q ) = 0 9 (E, - HL)\@:) = 0. 

The orthonormality relations follow from 
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